Effects of 100 years wastewater irrigation on resistance genes, class 1 integrons and IncP-1 plasmids in Mexican soil
نویسندگان
چکیده
Long-term irrigation with untreated wastewater can lead to an accumulation of antibiotic substances and antibiotic resistance genes in soil. However, little is known so far about effects of wastewater, applied for decades, on the abundance of IncP-1 plasmids and class 1 integrons which may contribute to the accumulation and spread of resistance genes in the environment, and their correlation with heavy metal concentrations. Therefore, a chronosequence of soils that were irrigated with wastewater from 0 to 100 years was sampled in the Mezquital Valley in Mexico in the dry season. The total community DNA was extracted and the absolute and relative abundance (relative to 16S rRNA genes) of antibiotic resistance genes (tet(W), tet(Q), aadA), class 1 integrons (intI1), quaternary ammonium compound resistance genes (qacE+qacEΔ1) and IncP-1 plasmids (korB) were quantified by real-time PCR. Except for intI1 and qacE+qacEΔ1 the abundances of selected genes were below the detection limit in non-irrigated soil. Confirming the results of a previous study, the absolute abundance of 16S rRNA genes in the samples increased significantly over time (linear regression model, p < 0.05) suggesting an increase in bacterial biomass due to repeated irrigation with wastewater. Correspondingly, all tested antibiotic resistance genes as well as intI1 and korB significantly increased in abundance over the period of 100 years of irrigation. In parallel, concentrations of the heavy metals Zn, Cu, Pb, Ni, and Cr significantly increased. However, no significant positive correlations were observed between the relative abundance of selected genes and years of irrigation, indicating no enrichment in the soil bacterial community due to repeated wastewater irrigation or due to a potential co-selection by increasing concentrations of heavy metals.
منابع مشابه
IncP-1ε Plasmids are Important Vectors of Antibiotic Resistance Genes in Agricultural Systems: Diversification Driven by Class 1 Integron Gene Cassettes
The role of broad-host range IncP-1ε plasmids in the dissemination of antibiotic resistance in agricultural systems has not yet been investigated. These plasmids were detected in total DNA from all of 16 manure samples and in arable soil based on a novel 5'-nuclease assay for real-time PCR. A correlation between IncP-1ε plasmid abundance and antibiotic usage was revealed. In a soil microcosm ex...
متن کاملWidespread dissemination of class 1 integron components in soils and related ecosystems as revealed by cultivation-independent analysis
Class 1 integrons contribute to the emerging problem of antibiotic resistance in human medicine by acquisition, exchange, and expression of resistance genes embedded within gene cassettes. Besides the clinical setting they were recently reported from environmental habitats and often located on plasmids and transposons, facilitating their transfer and spread within bacterial communities. In this...
متن کاملThe complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1beta group without any accessory genes.
The nucleotide sequences of the broad-host-range antibiotic resistance plasmids pB2 (61 kb) and pB3 (56 kb), which were isolated from a wastewater treatment plant, were determined and analysed. Both have a nearly identical IncP-1beta backbone, which diverged early from the sequenced IncP-1beta plasmids R751, pB10, pJP4, pADP1 and pUO1. In contrast to the latter plasmids, the pB2 and pB3 backbon...
متن کاملPlasmid-mediated multiple antibiotic resistance of Escherichia coli in crude and treated wastewater used in agriculture.
A total of 273 Escherichia coli isolates from raw and treated municipal wastewaters were investigated to evaluate the frequency and persistence of antibiotic resistance and to detect the occurrence of conjugative R plasmids and integrons. The highest resistance rates were against ampicillin (22.71%), tetracycline (19.41%), sulfamethoxazole (16.84%) and streptomycin (14.28%). Multiple antibiotic...
متن کاملGenomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool.
The dramatic spread of antibiotic resistance is a crisis in the treatment of infectious diseases that affect humans. Several studies suggest that wastewater treatment plants (WWTP) are reservoirs for diverse mobile antibiotic resistance elements. This review summarizes findings derived from genomic analysis of IncP-1 resistance plasmids isolated from WWTP bacteria. Plasmids that belong to the I...
متن کامل